

Water losses reduction and compliance with the Drinking Water Directive in Cyprus

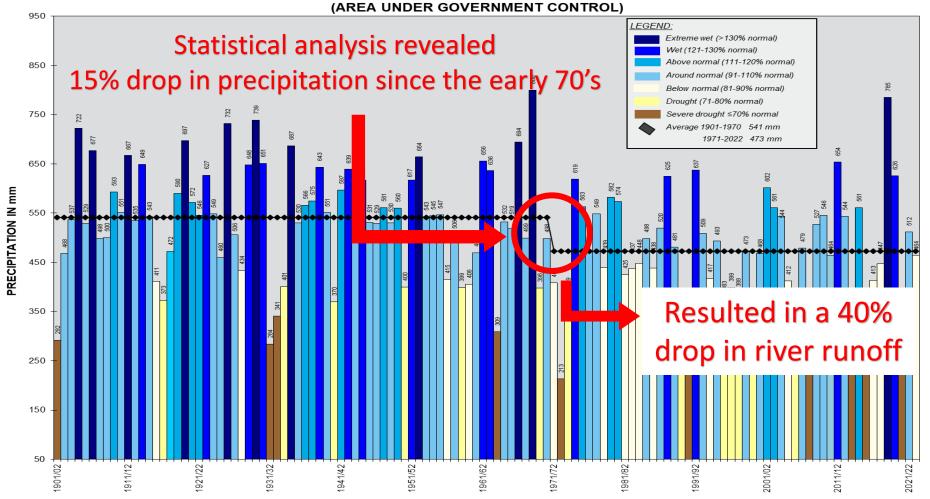
Georgios Kazantzis

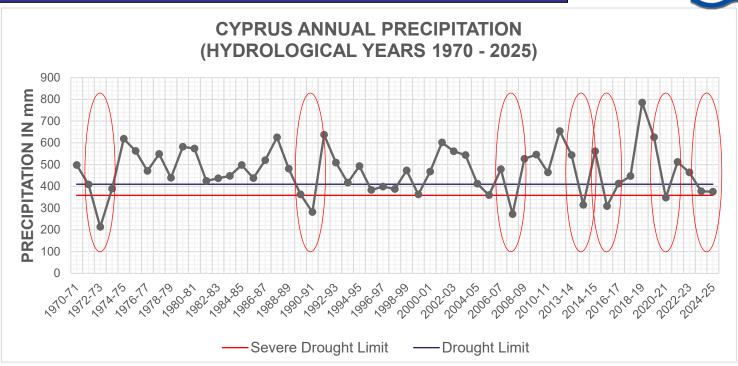
Chief Water Officer

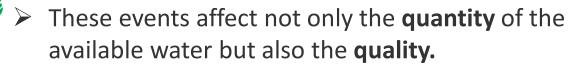
Water Development Department

Presentation Structure


- 1. The Problem of Water Scarcity in Cyprus
- 2. Dealing with the Problem
- 3. Water Loses in Cyprus
- 4. TSI funded Project "Water Losses Reduction and Compliance with the Drinking Water Directive"

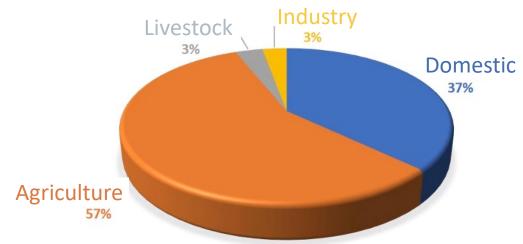

- ☐ Cyprus is the 2nd most Water Stressed country in the world with a Water Stress Index of >80%. The OECD defines a water stress index of >40% as high-water stress
- ☐ Cyprus is the country with the highest water exploitation index (WEI+) in Europe with a WEI+ of **91.8%** in 2022.


Note: WEI+ values are given as percentages, i.e. water use as a percentage of renewable water resources


CYPRUS ANNUAL PRECIPITATION (AREA LINDER GOVERNMENT CONTROL)

➤ In addition to the step drop in precipitation and the subsequent drop in river runoff, the occurrence of **Extreme Drought Events** has increased in frequency.




WATER INFLOW IN CYPRUS DAMS 1987/88 - 2024/25

HYDROLOGICAL YEAR(1 October - 30 Septemmber

- The total water demand is higher than the availability and irrigation needs are therefore rarely satisfied.
- ➤ Since 1996, water demand for irrigated agriculture was met only twice, in 2004 and in 2020, when dams were full

Demand: 266 MCM / year

Fresh water availability: 200 MCM / year

Deficit: 66 MCM

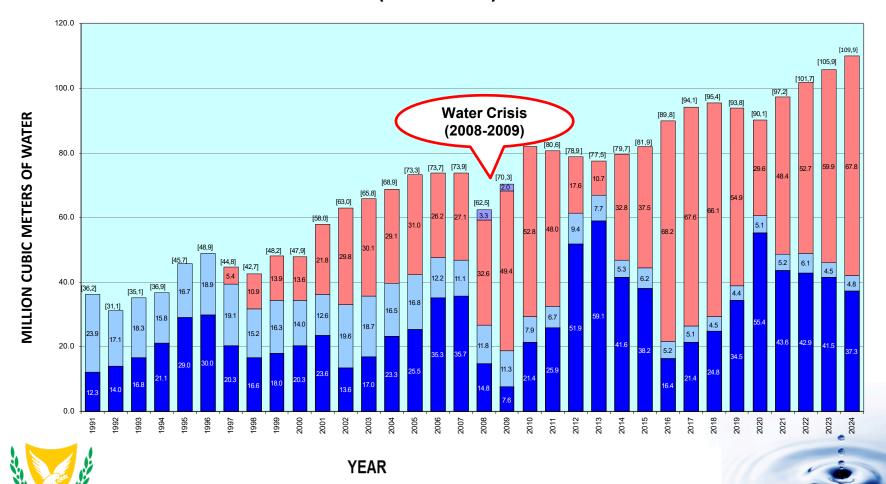
2023 Data

WATER BALANCE from main Government Water Works in million m³ (MCM)

		2022	2023	2024	2025	
Water Supply						
	Desalination	52.7	59.9	77.2	74.7	
Source	Dams	42.2	40.8	28.1	36.3	
Sou	Boreholes	6.1	4.6	6.7	6.2	
	Total	101.0	105.3	112.0	117.2	
Irrigation						
	Dams	42.9	43.9	33.6	14.0	
	Boreholes	9.3	10.2	11.4	11.1	
Source	Reclaimed Wate	13.3	14.5	15.0	15.5	
Sou	Total	65.5	68.6	60.0	40.6	
	Total demand	65.5	68.6	69.2	69.6	
	Deficit	0.0	0.0	9.2	29.0	
Total demand		166.5	173.9	181.2	186.8	

Dealing with the Problem

In an effort to meet the demand for water of all uses, the Water Development Department, implemented several large-scale infrastructure projects:


- > 110 Dams and Reservoirs with a total capacity of 332 million cubic meters of water
 - ■56 large dams according to the International Committee of Large Dams (ICOLD)
 - ■The European country with the highest number of large dams/area
- ➤ 6 Water Treatment Plants with a total daily capacity of 242.000 m³
- > 7 Desalination Plants of a total daily capacity of 264.000 m³
 - >Several more plants are under construction or planning
 - ➤ Desalination covers approximately 75% of water supply demand
 - The highest per capita desalination production in Europe
- ➤ 13 Wastewater Treatment Plants with a total production of 31.3 Million m3 (2024) of tertiary treated water 90% of which is used for irrigation
 - ➤ The highest percentage of water reuse in Europe

Dealing with the Problem: Water Supply

■ Water Transfer from Greece (2008-2009)

[105,9]

GOVERNMENT WATER WORKS – DRINKING WATER (1991 – 2024)

■ Dams

■ Boreholes

■ Desalination Plants

Dealing with the Problem

Priority order according to the principle of "Water Efficiency First" which is promoted under the new EU Water Resilience Strategy:

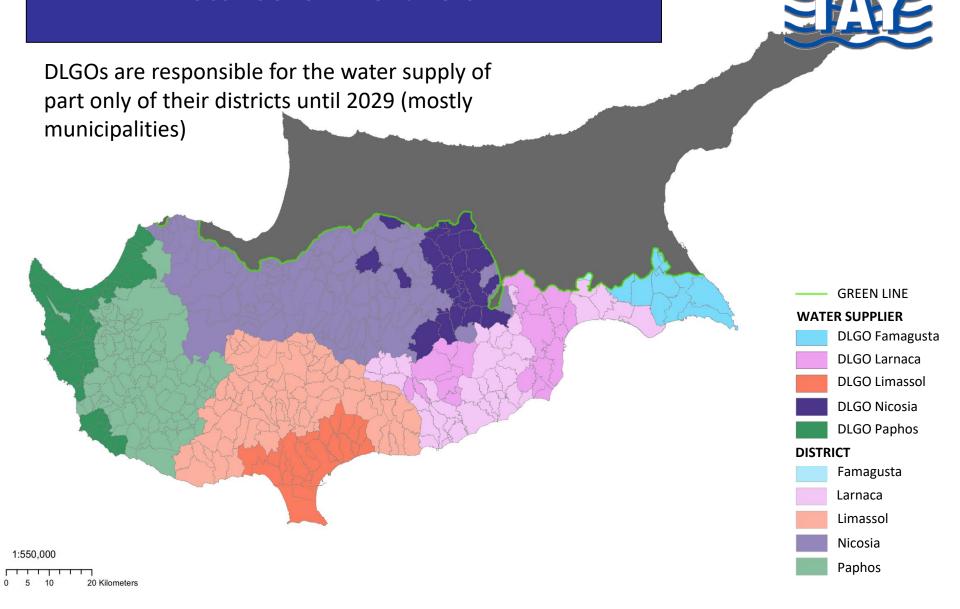
- 1. Water demand reduction
- 2. Increased efficiency (e.g. losses reduction)
- 3. Water reuse (reclaimed water)
- 4. Water production increase
- Cyprus has very limited reliable potable water resources other than expensive and energy consuming desalination.
- Water reuse is undertaken extensively but this is benefiting exclusively irrigation.
- Thus, water demand reduction and increased efficiency are even more important.

Water Losses challenges in Cyprus

- Most water supply systems are old and not sufficiently maintained.
- ➤ No centrally collected data on water losses
- Most water supply providers traditionally have been small (e.g. small municipalities and communities) with very low capacity to collect data and deal with water losses
- ➤ 3 largest cities (Nicosia, Limassol, Larnaca) had Water Boards with active water loss strategies. They reports losses in the range of 15-25% but with different and unclear methodologies.
- > All other water suppliers did not report water loss data.
- ➤ A study undertaken for WDD in 2024 for the Kokkinohoria area (small communities) showed water loses rates ranging between 30%-71% with an average rate of app. 40%.
- ➤ Despite the lack of data, it is estimated that average NRW (drinking water) in Cyprus has been exceeding 30% perhaps even 40%

Local Government Reform

In July 2024 a local government reform took place in Cyprus:


- > 30 municipalities merged into 20 larger ones incorporating many communities
- > 5 District Local Government Organizations (DLGO) established in charge of:
 - ➤ Water supply
 - **≻**Sewerage
 - Development Licencing (Urban planning & building permitting)
 - ➤ Solid waste management

Data are gradually becoming available on a district level from 7/2004 onwards

Local Government Reform

Technical Support Instrument

Supporting reforms in 27 Member States

WATER LOSSES REDUCTION AND COMPLIANCE WITH THE DRINKING WATER DIRECTIVE

TSI Water Loses: Scope and Objectives

- Cyprus faces extreme water scarcity, with the highest Water Exploitation Index (WEI+) in Europe (91%)
- A significant amount of potable water is lost, undermining water security and utility performance
- Reliable and harmonized data on water losses is lacking
- Growing regulatory pressure to comply with Article 4(3) of the EU Drinking Water Directive (DWD)
- The recent establishment of DLGOs introduces transitional challenges

Challenges

Objectives

- Define a suitable methodology and stakeholder-driven approach for water loss assessment
- Define KPIs and a harmonized data collection framework to support accurate assessment and benchmarking
- Assess current levels of water losses and potential for improvement in alignment with the EU DWD
- Develop a comprehensive National Action Plan for the Reduction of Water Losses (NAPRWL) with measurable target
- Prepare seven tailored Local Action Plans (LAPRWL), based on a standardized template
- ► Ensure effective knowledge transfer and capacity-building

Value & Benefits

- Strengthened water security and system resilience
- Fulfilment of regulatory obligations
- Improved data accuracy, transparency, and harmonization to support evidence-based strategic planning
- ► Enhanced operational efficiency, utility performance, and revenue protection
- Alignment and optimization of infrastructure investments within a coherent national and local strategy
- Greater institutional capacity and local ownership

- 1. Assessment of Water Losses and Improvement Potential (11/2025)
- 2. National Action Plan for Reduction of Water Losses (06/2026)
- 3. 7 Local Action Plans for Reduction of Water Losses (01/2027)
- 4. Training and Capacity Building Programme (04/2027)

Final Report and closing Events (05/2027)

Assessment of Water Losses and Improvement Potential

New Drinking Water Directive 2020/2184

Article 4(3): In accordance with Directive 2000/60/EC, Member States shall ensure that an assessment of water leakage levels within their territory and of the potential for improvements in water leakage reduction is performed using the infrastructural leakage index (ILI) rating method or another appropriate method. That assessment shall take into account relevant public health, environmental, technical and economic aspects and cover at least water suppliers supplying at least 10 000 m3 per day or serving at least 50 000 people.

The results of the assessment shall be communicated to the Commission by **12 January 2026**.

1. Assessment of Water Losses and Improvement **Potential**

EUREAU Method

The approved indicator is defined as the volume of non-revenue water per unit of mains length, so the WLL is obtained by dividing NRW by the total mains length (abduction, transport and distribution pipes):

$$Non - Revenue\ Water\ [m^3/(km.\ year)] = \frac{Non - Revenue\ Water\ (m^3)}{Total\ mains\ length\ (km)}$$

 Minimum data requirements for MS' water leakage level assessment within their territory: data related to the EUREAU method, requiring Non-Revenue Water (NRW) on a yearly basis and per km mains (unit = m³/(year.km)). (*)

Additional data on 'real losses' ("water that is lost into the ground") as part of NRW (m³/year) is recommended by COM in view of the upcoming Commission Water

Reference period: COM recommends data covering at least 3 distinct years within the period 2021 - 2025

Level of detail: data per water supplier ("supplying at least 10 000 m3/day or serving at least 50 000 people"), indicating the % of the total national water supply represented

IWA Water Balance – EU Drinking Water Expert Group (Specialist Group for Water Leakage Levels)

Raw Water Abstracted (RWAB)

Imported treated water (ITW)

	-	ı		9	,	
V		Authorised consumption (including exported water) (ACON)	Billed authorised consumption (BAC)	Billed metered consumption (BMC)		
				Billed unmetered consumption (BUC)	Revenue Water (RW)	
	System Input		Unbilled authorised consumption (UAC)	Unbilled metered consumption (UMC)		
	Volume (SIV)			Unbilled unmetered consumption (UUC)		
		Water losses (WLOS)	Apparent losses (AL)	Customer metering inaccuracies (CMI)		
				Unauthorised consumption (UC)	Non Revenue Water (NRW)	
			Real losses (CARL)	Leakage on transmission and distribution mains (LTD)		
				Leakage and overflows at utility's storage tanks (reservoirs) (LOS)		
				Leakage on service connections up to the point of customer metering (water suppliers' responsibility) (LSC)		

Reporting Period for Cyprus: 01/2024-12/2024 due to the Local Administration Reform

National Action Plan for Reduction of Water Losses

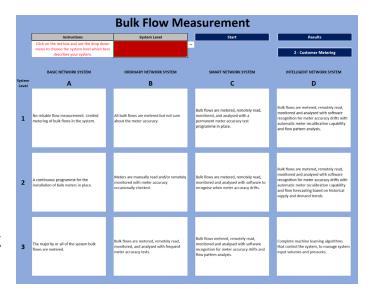
- Development of NAPRWL using findings from 1 and stakeholders' input
- Definition of strategic actions, KPIs, cost estimates, funding sources, and implementation mechanisms
- Stakeholder engagement through workshops

7 Local Action Plans for Reduction of Water Losses

- Standardized LAPRWL template based on the national plan
- Seven tailored plans for WDD, five DLGOs, and five transitioning communities with detailed local actions, KPIs, and cost estimates
- Field assessments

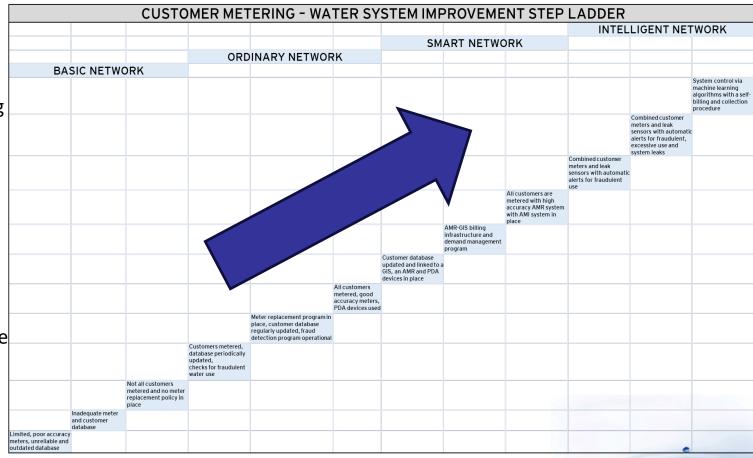
Training and Capacity Building Programme for WDD and 5 DLGOs

- ▶ Training Needs Analysis (TNA), gap assessment, and stakeholder mapping
- Development of tailored training materials, formats, and digital repository
- Delivery of training sessions, train-the-trainer workshops, and evaluation reports



TSI Water Loses: Water System Improvement Matrix

- A matrix developed based on collective experiences,
 knowledge and expertise.
- Begins at the current level of water system and proceeds to the next level through a series of much-needed sustainable changes and system improvements.
- Imperative to fully understand, measure and document a water utility's current level of operations and then develop plans on how to move forward to the next operational level.
- Common for utilities to underestimate the effort and work needed to improve system efficiency.
- To move forward will take many processes, some simple and some that are not so easy, along with some that will require investment and time.



TSI Water Loses: Water System Improvement Matrix

Area of assessment

- 1. Bulk Metering
- Customer Metering
- Pressure Management
- Leakage Management
- Asset Management
- 6. Water Balance
- 7. Human Resources

THANK YOU

