

TAIEX TSI

Enhancing climate change adaptation in Cyprus:
Workshop to support the implementation of the revised
National Climate Change Adaptation Strategy and Action Plan
- Nicosia 13-15 October 2025

Increasing water efficiency in the urban water sector

Gianfredi Mazzolani, PhD

Director of the Department of Research, Development and International Activities

Technical Support Instrument

Supporting reforms in 27 Member States

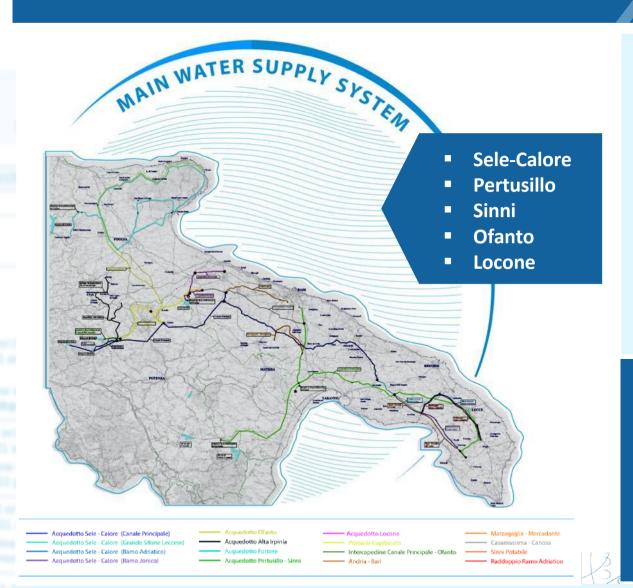
Who we are, what we do

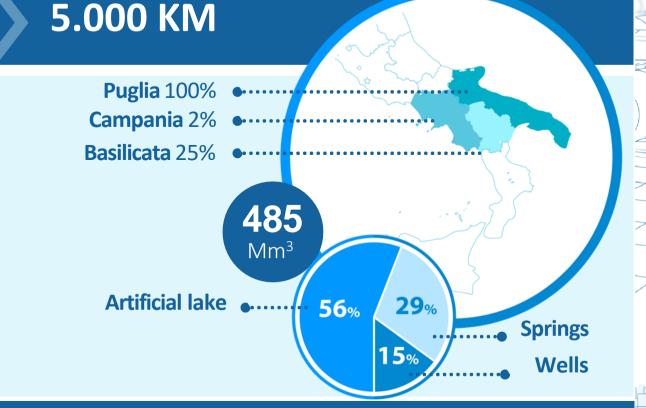
Acquedotto Pugliese at a glance

- The region of Apulia has always been affected by water scarcity, known since the time of the Latin poet Orazio, who called it "siticulosae Apuliae".
- The history of Acquedotto Pugliese dates back to the **beginning of the XX**th **century**, when the Kingdom of Italy financed the project for the construction of a large regional transmission system (including a 244 km canal), a project of huge economic commitment and **unparalleled technical challenge**.

- Today, Acquedotto Pugliese (otherwise known as AQP) is the largest publicly-owned Italian water company and a leading European public player in the management of integrated water and wastewater systems.
- AQP is a joint stock company entirely owned by the Government of Region Puglia.

• The company is in charge of **the management of integrated water systems** in the region of Puglia (250 municipalities, 4 million inhabitants) and 12 municipalities in the neighboring region of Campania. It runs one of the largest water conveyance system worldwide: 5,000 km of large-diameter transmission pipes interconnected carrying water to all the urban centers.




In 2024 the Italian Government recognized Acquedotto Pugliese as a "Company of strategic relevance to the national interest" (Law No. 191 of December 13, 2024).

The solution to thirst

The Sele-Calore is the oldest and longest main transmission pipe (free flow)

It is an extraordinary work of hydraulic engineering It is important to tell that includes:

- 99 tunnels (with a total length of 109 km)
- 91 canal bridges
- dozens of branches to urban areas

Historical landmarks

1902 Law No. 245 "for the construction and operation of the Acquedotto Pugliese" INI SAAAAA

2002

1915 Water reaches Bari for the first time

2009

Free transfer

shareholding

Acquedotto

Pudliese

SpĂ to the

regions of

Apulia and Basilicata

of the entire

AQP acquires the Company ASECO SpA. whose composting plant is located in the territory of Ginosa Marina (TA)

2017

24 Aprile 1915 * 24 Aprile 2015

Law No. 205 extends the deadline for entrusting the management of the Integrated Water Service to AQP to Dec. 31, 2021

2021

With Decree Law No. 152 of Nov. 06. 2021. the entrustment of integrated water service management to AQP is extended to Dec. 31, 2025

2023

The entry of the Puglia Region's Territorial Agency for Waste Management (AGER Puglia) into Aseco's share capital is finalized with the aim of establishing a public operator in the waste sector comparable to Acquedotto Pugliese in the water sector.

D'ACQUA

Work starts to bring water from the Sele River to Apulia

1906

Decree No. 141/99 transforms Ente Autonomo Acquedotto Pugliese into a jointstock company

1999

The agreement to transfer the management of the integrated water service for Basilicata from AQP to Acquedotto Lucano SpA is signed 2004

Apulia Region buys shares from Basilicata Region by holding 100 % of the share capital of Acquedotto Pugliese SpA

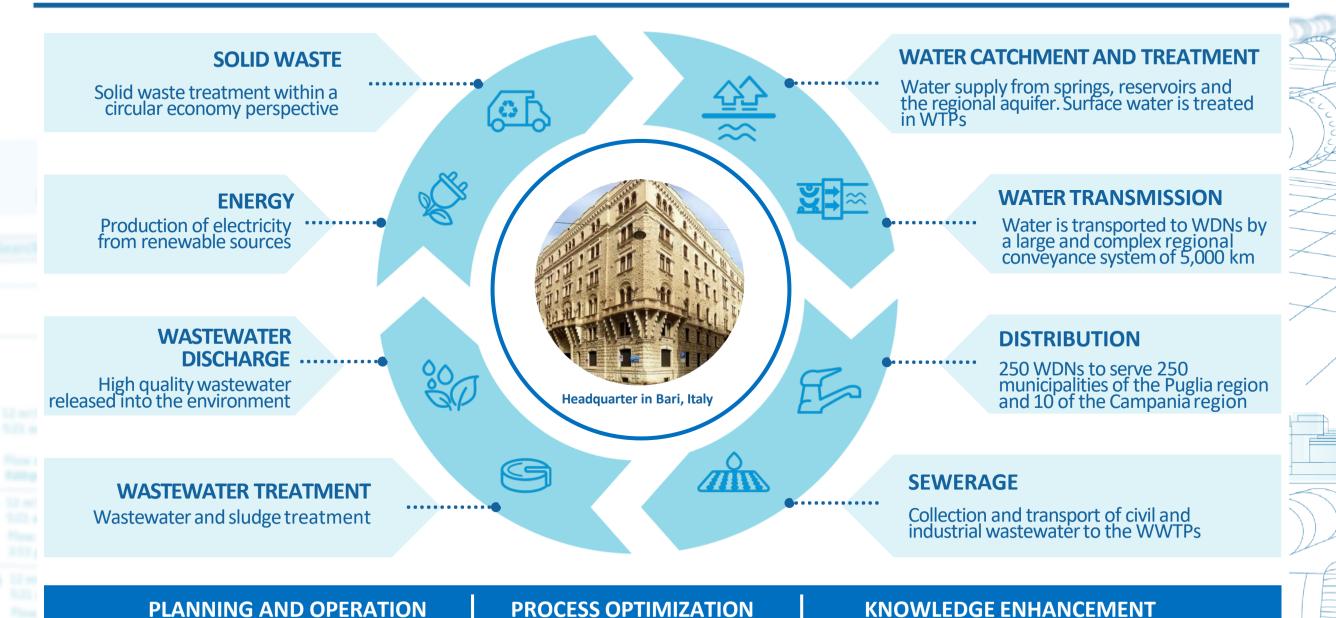
2011

By Law No. 58, the entrustment of the management of the Integrated Water Service to AQP is extended to Dec. 31, 2023

2019

FUTURE

.


With Law No. 191 of December 13, 2024. the Italian State designates AQP as a "company of strategic relevance to the national interest".

2024

12 m²/h - Mario Rossi 123

Water and wastewater services managed by AQP

Facts and figures

260

Municipalities served water distribution

248

Municipalities served by the sewer system

255

Municipalities served by wastewater treatment

2.290

Employees

100% With a permanent contract.

170 k ton

Sludge produced

-2,8% compared to 2023

119 k

Hours of training

52h

(average training time per person)

170 k ton

Sludge reused

M

Customers served

≈ 4 M

Population

served

+24 k km

Water pipelines

+13 k km

Sewer pipelines

185

Wastewater treatment plants

Composting plant

45

Water refining plant

+3 billion

Tenders issued from 2022 to 2024 Tenders awarded in 2024

270

Total value

498 M€

More than

50 %

of active contracts are awarded to companies based in Puglia

Integrated Reporting 2024

Facts and figures

7,04 GWh

Electricity generated from renewable sources

≈ 50k samples

Approximately 1,3 м parameters monitored for drinking and

wastewater quality

 $\approx 2.174 \text{ ton}$

CO₂ emissions avoided

€ **537,5** м

Equity

€ **(349,4)** м

Net Financial Position

€ 453,3 м

Investments

Pagina 9

€ 696,4 M

Production value

€ 235,1 м

Gross Operating Margin

€ 8,4 M

Net Income

Baa3 stable

Moody's Rating

6

Ongoing research projects

Integrated Reporting 2024

Water loss regulation and KPIs

12 m²/h - Mario Rossi 123
5:21 am
Flow months for a sec

Water losses regulation in Europe

European level – The Drinking Water Directive (DIRECTIVE (EU) 2020/2184 16 Dec 2020

According to Art. 4.3 Member States shall ensure that an **assessment of water leakage levels** within their territory and of the potential for improvements in water leakage reduction is performed using the **infrastructural leakage index (ILI) rating method or another appropriate method**.

The results of the assessment shall be communicated to the Commission by 12 January 2026.

By 12 January 2028, the Commission shall adopt a delegated act (...) by **setting out a threshold**, based on ILI or another appropriate method, above which Member States shall present an action plan.

Within two years of the adoption of the delegated act (...) Member States having a **leakage rate exceeding the threshold** set out in the delegated act shall present an **action plan** to the Commission laying down a set of measures to be taken in order to **reduce their leakage rate**.

- For the first time, EU will apply a **single method** for drafting the water balance and a **uniform system of KPIs** for evaluating the performances.
- The DWD Leakage Sub-group is largely **opposed to ILI**, since the majority of member states is in favor of the **linear loss** indicator (m³/d/km).
- Several reasons for opposing to ILI e to the percentage indicator (applied in Italy!).
- Choosing **effective KPIs** is crucial for driving correctly the high public expenditure for water loss reduction (pipe rehabilitation, DMAs, pressure control, etc.)

Water losses regulation in Italy

acquedotto pugliese l'acqua, bene comune

- Two "levels" of water regulation in Italy: a national level of **ARERA** (Autorità di Regolazione per Energia Reti e Ambiente), the Regulatory Authority for Energy, Networks and Environment and a local/regional level with **AIP** (Autorità Idrica Pugliese, Apulian Water Authority) in the Apulia region.
- Looking at water losses, a complex **incentive regulation is applied by ARERA** (no other similar method across Europe), whereas the task of AIP is to validate water balance and KPIs drafted by AQP, and approve the investment plan targeting the reduction of water losses, which is carried out by AQP.

National level

Regional level

ARERA regulation of water losses

Classes		M1a - perdite idriche lineari (mc/km/gg)						
		M1a <12	12≤ M1a <20	20≤ M1a <35	35≤ M1a <55	M1a ≥55		
	M1b <20%	A						
riche	20%≤ M1b <35%		В					
rdite idricl	35%≤ M1b <45%		•	С				
Perdite perce	45%≤ M1b <55%				D			
	M1b ≥55%					E		

Annual target according to the class

ID	Indicatore	Categoria tariffaria	ID Classe	Obiettivi
	M1a - Perdite idriche lineari [mc/km/gg] M1b – Perdite idriche percentuali [%]	RES	A	Mantenimento
			В	-2% di M1a annuo
M1			С	-4% di M1a annuo
			D	-5% di M1a annuo
			E	-6% di M1a annuo

ARERA regulation of water losses (since 2018)

Two water losses KPIs applied in the ARERA regulations: 1) the linear indicator M1a (m³/km/d); 2) the percentage indicator M1b (%).

Water utilities are classified each year in one of 5 classes (A, B, C, D and E). The "worst" KPI between M1a and M1b prevails in defining the class.

Annual target reduction of M1a is defined according to the class.

A complex ranking system and money reward / penalty mechanism is applied every two years: utilities reaching the target are rewarded, otherwise penalized.

The method is under discussion because of several distortions caused by M1b.

A novel indicator – AMSI: Asset Management Support Indicator

AMSI was introduced in two 2024 research papers

lead by prof. Orazio Giustolisi of the Technical University of Bari, both co-authored by Acquedotto Pugliese

Water Research 258 (2024) 121765

Contents lists available at ScienceDirec

Water Research

journal homepage: www.elsevier.com/locate/watres

From advanced hydraulic modelling to performance indicator for the efficiency of investments in leakage management of pressurized water systems

O. Giustolisi a. . G. Mazzolani b. L. Berardi c. D.B. Laucelli a

- a Politecnico di Bari, via Orabona, 4. Bari, Italy
- Acquedotto Pugliese S.p.A., via Cognetti, 36, Bari, Italy
- Università degli studi "G. D'Amuneio" Chieti Pescara, viale Pindaro, 42, Pescara, Italy

ARTICLEINFO

Drinking water infrastructure Water distribution networks Hydraulic modelling

Introduction: The digital transition is meant as the review of processes using digital technologies and strategies to increase efficiency based on a simpler collection of representative data. The process of interest here is the leakage management in systems distributing water.

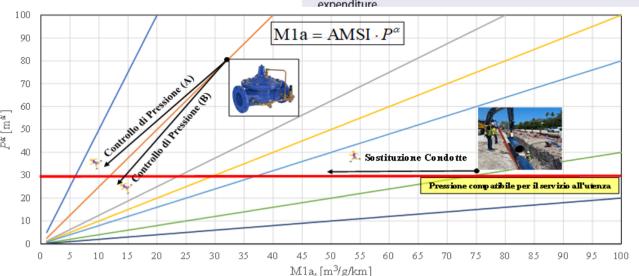
Objective: To develop a novel key performance indicator (KPI) for leakage management considering the needs of ongoing digital transition in the water sector, which is opening a new era in the management of drinking water

Methodology: The novel KPI, named Asset Management Support Indicator, is developed starting from advanced hydraulic modelling and the physical laws governing leakage outflows, in order to be physically based and rational for increasing the efficiency of leakage management activities using representative process data. Results: The Asset Management Support Indicator supports effective leakage management strategies by driving towards efficiency, as discussed and demonstrated using several real case studies.

Conclusion: The novel indicator is consistent with the digital transition perspective and current need of increasing the efficiency of water utilities, and it is also suitable to be adopted by water authorities to benchmark their performances, because it overcomes the weaknesses of traditional KPIs.

DIGITAL WATER 2024, VOL. 2, NO. 1, 1-31 https://doi.org/10.1080/28375807.2024.2406746

RESEARCH ARTICLE



Effectiveness of water loss performance indicators for asset management

Orazio Giustolisi na. Francesco Gino Ciliberti na. Gianfredi Mazzolanic and Domenico Laforgia

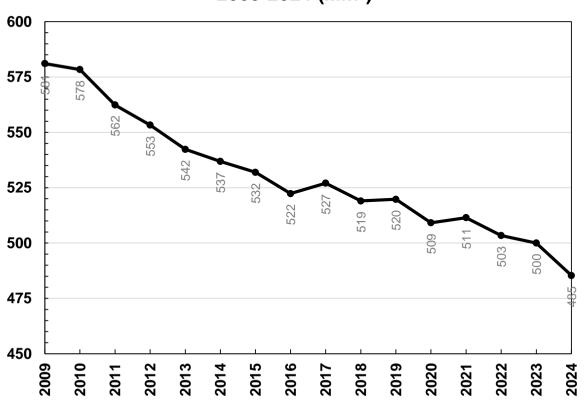
aDICATECH, Technical University of Bari, Bari, Italy: bINGEO, University of Chieti-Pescara, Pescara, Italy: Acquedotto Pugliese S.p.A. Bari, Italy

Introduction: Water loss management in hydraulic infrastructures is a major concern for utilities worldwide since leakages undermine their economic, environmental and energy sustainability. Long-term investment plans for reducing leakage levels are often cost-intensive and always target a specific water loss performance indicator (WLPI). The choice of a proper and effective WLPI is thus a relevant issue because of its direct impact on the quality of public evnenditure

—— AM SI = 0.2 —— AM SI = 0.4 —— AM SI = 0.8 —— AM SI = 1 —— AM SI = 1.25 —— AM SI = 2.5 —— AM SI = 5

s: the density ture leakage pport indica-

n their math-


or is unfit for adictory outring leakage perly applied respect to ILI, d and results ansformation

12 m²/h - Mario Rossi 123

Tackling water losses: Best practices of Acquedotto Pugliese

Water volume produced by Acquedotto Pugliese 2009-2024 (Mm³)

Best practice #1 – The Control Room

The Control Room is a centralized space for driving the digital transformation

- 24/7 Call Center for failure management
- SCADA and GIS management
- Pressure management and MNF analysis in DMAs
- Leakage monitoring and control
- Real time and forecast simulation with advanced hydraulic modeling

Best practice #2 – Deploying 20,000 noise-loggers in WDNs

- Daily data transmission and leakage management through a dedicated platform.
- The system enables to virtually reduce to zero the time between the formation of a new unreported leakage and its repair.
- Acquedotto Pugliese is carrying out the deployment of one of the largest noise-logger project worldwide (if not the largest): 20,000 devices under installation in around 4,000 km of mains in 34 municipalities.

Best practice #3 – The smart metering plan

- Advanced Metering Infrastructures provide several benefits to water utilities: i) improving water balance and WDNs efficiency; ii) control of apparent losses; iii) no consumption estimate in billing; iv) post-meter leakage detection.
- Ultrasonic water meters transmitting data with LoRaWAN protocol represent a proven and effective solution for building an AMI.
- In 2021 Acquedotto Pugliese started the largest Italian smart metering plan: the 10-year replacement of >1,000,000 mechanical meters with electronic meters to be managed in a fixed network.

- 360,000 mechanical meter replaced with ultrasonic water meters so far.
- LoRaWAN communication infrastructures in two provinces. Meter Data Management (MDM) platform under deployment.

Best Practice #4 – Sniffer dog for detecting leaks in transmission pipes

- AQP is the first Italian water utility testing a sniffer dog for pinpointing leaks, and one of the few utilities worldwide applying this "nature-based" solution in the last ten years (Australia, UK, US, France and Morocco).
- Dogs are **natural biosensors** because they have 220 million odor receptors compared to 5 million in humans.
- According to the 2023 IWA paper Sniffer dogs in water leakage detection has emerged as a promising technology (...). Leveraging their remarkable ability to trace chlorine, sniffer dogs have demonstrated an impressive accuracy and high efficiency in detecting underground pipe leaks.

Kev words; pipeline leakage, sniffer dogs, water leakage detection, water supply network

- The only Italian sniffer dog is a labrador retriever named Ippolito, trained by an innovative breeder of environmental dogs from the Marche region.
- Testing the ability of Ippolito to detect leaks in our transmission pipes (accounting 5,000 km of total length) is in progress.

